12 research outputs found

    Timing in Technischen Sicherheitsanforderungen für Systementwürfe mit heterogenen Kritikalitätsanforderungen

    Get PDF
    Traditionally, timing requirements as (technical) safety requirements have been avoided through clever functional designs. New vehicle automation concepts and other applications, however, make this harder or even impossible and challenge design automation for cyber-physical systems to provide a solution. This thesis takes upon this challenge by introducing cross-layer dependency analysis to relate timing dependencies in the bounded execution time (BET) model to the functional model of the artifact. In doing so, the analysis is able to reveal where timing dependencies may violate freedom from interference requirements on the functional layer and other intermediate model layers. For design automation this leaves the challenge how such dependencies are avoided or at least be bounded such that the design is feasible: The results are synthesis strategies for implementation requirements and a system-level placement strategy for run-time measures to avoid potentially catastrophic consequences of timing dependencies which are not eliminated from the design. Their applicability is shown in experiments and case studies. However, all the proposed run-time measures as well as very strict implementation requirements become ever more expensive in terms of design effort for contemporary embedded systems, due to the system's complexity. Hence, the second part of this thesis reflects on the design aspect rather than the analysis aspect of embedded systems and proposes a timing predictable design paradigm based on System-Level Logical Execution Time (SL-LET). Leveraging a timing-design model in SL-LET the proposed methods from the first part can now be applied to improve the quality of a design -- timing error handling can now be separated from the run-time methods and from the implementation requirements intended to guarantee them. The thesis therefore introduces timing diversity as a timing-predictable execution theme that handles timing errors without having to deal with them in the implemented application. An automotive 3D-perception case study demonstrates the applicability of timing diversity to ensure predictable end-to-end timing while masking certain types of timing errors.Traditionell wurden Timing-Anforderungen als (technische) Sicherheitsanforderungen durch geschickte funktionale Entwürfe vermieden. Neue Fahrzeugautomatisierungskonzepte und Anwendungen machen dies jedoch schwieriger oder gar unmöglich; Aufgrund der Problemkomplexität erfordert dies eine Entwurfsautomatisierung für cyber-physische Systeme heraus. Diese Arbeit nimmt sich dieser Herausforderung an, indem sie eine schichtenübergreifende Abhängigkeitsanalyse einführt, um zeitliche Abhängigkeiten im Modell der beschränkten Ausführungszeit (BET) mit dem funktionalen Modell des Artefakts in Beziehung zu setzen. Auf diese Weise ist die Analyse in der Lage, aufzuzeigen, wo Timing-Abhängigkeiten die Anforderungen an die Störungsfreiheit auf der funktionalen Schicht und anderen dazwischenliegenden Modellschichten verletzen können. Für die Entwurfsautomatisierung ergibt sich daraus die Herausforderung, wie solche Abhängigkeiten vermieden oder zumindest so eingegrenzt werden können, dass der Entwurf machbar ist: Das Ergebnis sind Synthesestrategien für Implementierungsanforderungen und eine Platzierungsstrategie auf Systemebene für Laufzeitmaßnahmen zur Vermeidung potentiell katastrophaler Folgen von Timing-Abhängigkeiten, die nicht aus dem Entwurf eliminiert werden. Ihre Anwendbarkeit wird in Experimenten und Fallstudien gezeigt. Allerdings werden alle vorgeschlagenen Laufzeitmaßnahmen sowie sehr strenge Implementierungsanforderungen für moderne eingebettete Systeme aufgrund der Komplexität des Systems immer teurer im Entwurfsaufwand. Daher befasst sich der zweite Teil dieser Arbeit eher mit dem Entwurfsaspekt als mit dem Analyseaspekt von eingebetteten Systemen und schlägt ein Entwurfsparadigma für vorhersagbares Timing vor, das auf der System-Level Logical Execution Time (SL-LET) basiert. Basierend auf einem Timing-Entwurfsmodell in SL-LET können die vorgeschlagenen Methoden aus dem ersten Teil nun angewandt werden, um die Qualität eines Entwurfs zu verbessern -- die Behandlung von Timing-Fehlern kann nun von den Laufzeitmethoden und von den Implementierungsanforderungen, die diese garantieren sollen, getrennt werden. In dieser Arbeit wird daher Timing Diversity als ein Thema der Timing-Vorhersage in der Ausführung eingeführt, das Timing-Fehler behandelt, ohne dass sie in der implementierten Anwendung behandelt werden müssen. Anhand einer Fallstudie aus dem Automobilbereich (3D-Umfeldwahrnehmung) wird die Anwendbarkeit von Timing-Diversität demonstriert, um ein vorhersagbares Ende-zu-Ende-Timing zu gewährleisten und gleichzeitig in der Lage zu sein, bestimmte Arten von Timing-Fehlern zu maskieren

    A middleware protocol for time-critical wireless communication of large data samples

    Get PDF
    We present a middleware-based protocol that reliably synchronizes large samples consisting of multiple frames efficiently and within application level QoS requirements over a lossy wireless channel. The protocol uses a custom retransmission scheme, exploiting the latency requirements on sample level for frame level scheduling. It can be integrated into the popular DDS middleware. We investigate some technical limits of such a protocol and compare it to existing error protocols in the software stack and in the wireless protocol and combinations thereof. The comparison is based on an Omnet++ simulation using an established wireless channel error model. For evaluation, we take a use case from automated valet parking where infrastructure data provided via a wireless link augments in-vehicle sensor data. The use case respects the related safety requirements. Results show that the application awareness of the presented protocol, significantly improves service availability by transmitting data efficiently in time even under higher frame error rates

    Self-Aware Scheduling for Mixed-Criticality Component-Based Systems

    Get PDF
    A basic mixed-criticality requirement in real-time systems is temporal isolation, which ensures that applications receive a guaranteed (CPU) service and impose a bounded interference on other applications. Providing operating system support for temporal isolation is often inefficient, in terms of utilisation and achieved latencies, or complex and hard to implement or model correctly. Correct models are, however, a prerequisite when response times are bounded by formal analyses. We provide a novel approach to this challenge by applying self-aware computing methodologies that involve run-time monitoring to detect (and correct) model deviations of a budget-based scheduler

    Self-Adaptation for Availability in CPU-FPGA Systems Under Soft Errors

    Get PDF
    We introduce a model-based reliability estimation to preserve application availability in CPU-FPGA systems exposed to soft errors under varying environment conditions. The estimation is used as an in-system method to select a suitable configuration for changing radiation conditions. This allows systems to autonomously adapt their configuration in order to balance between reliability and performance. Such a self-adaptation goes beyond the state-of-the-art, where adaptation relies on preplanned reactive mode changes. By autonomously evaluating new configurations, our self-adaptation process is capable of increasing the availability by selecting the configuration with the desired application reliabilities for the current environment conditions

    An extensible autonomous reconfiguration framework for complex component-based embedded systems

    Get PDF
    We present a framework based on constraint satisfaction that adds self-integration capabilities to componentbased embedded systems by identifying correct compositions of the desired components and their dependencies. This not only allows autonomous integration of additional functionality but can also be extended to ensure that the new configuration does not violate any extra-functional requirements, such as safety or security, imposed by the application domain

    Demonstrating Controlled Change for Autonomous Space Vehicles

    Get PDF
    Recent research discusses concepts of infield changes to overcome the drawbacks of conventional lab-based system design processes. In this paper, we evaluate the concept of controlled change by applying it to a demonstration of a potential future space exploration scenario with mobile robots. The robots are capable of executing several image computations for exploration, object detection and pose estimation, which can be allocated to both FPGA-and processor resources of a System-on-Chip. The demonstrator addresses three scenarios which cover application-, environment-, and platform change. The system adapts itself to any of the named changes. This capability can increase the autonomy of future space missions. Exemplary, the demonstrator executes adaption of applications during operation to fulfill the mission goals, adaption of reliability under changing environment conditions, and adaption to sensor failure

    Data-Age Analysis and Optimisation for Cause-Effect Chains in Automotive Control Systems

    Get PDF
    Automotive control systems typically have latency requirements for certain cause-effect chains. When implementing and integrating these systems, these latency requirements must be guaranteed e.g. by applying a worst-case analysis that takes all indeterminism and limited predictability of the timing behaviour into account. In this paper, we address the latency analysis for multi-rate distributed cause-effect chains considering staticpriority preemptive scheduling of offset-synchronised periodic tasks. We particularly focus on data age as one representative of the two most common latency semantics. Our main contribution is an Mixed Integer Linear Program-based optimisation to select design parameters (priorities, task-to-processor mapping, offsets) that minimise the data age. In our experimental evaluation, we apply our method to two real-world automotive use cases

    Towards model-based integration of component-based automotive software systems

    Get PDF
    The increasing complexity of automotive software systems and the desire for more frequent software and even feature updates require new approaches to the design, integration and testing of these systems. Ideally, those approaches enable an in-field updatability of automotive software systems that provides the same degree of safety guarantees as the traditionally labbased deployment. In this paper, we present a layered modelling approach that formalises the integration procedure of automotive software systems using graph-based models and formal analyses

    Self-awareness in autonomous automotive systems

    Get PDF
    Self-awareness has been used in many research fields in order to add autonomy to computing systems. In automotive systems, we face several system layers that must be enriched with self-awareness to build truly autonomous vehicles. This includes functional aspects like autonomous driving itself, its integration on the hardware/software platform, and among others dependability, real-time, and security aspects. However, self-awareness mechanisms of all layers must be considered in combination in order to build a coherent vehicle self-awareness that does not cause conflicting decisions or even catastrophic effects. In this paper, we summarize current approaches for establishing self-awareness on those layers and elaborate why self-awareness needs to be addressed as a cross-layer problem, which we illustrate by practical examples

    UNICARagil - Disruptive Modular Architectures for Agile, Automated Vehicle Concepts

    Get PDF
    This paper introduces UNICARagil, a collaborative project carried out by a consortium of seven German universities and six industrial partners, with funding provided by the Federal Ministry of Education and Research of Germany. In the scope of this project, disruptive modular structures for agile, automated vehicle concepts are researched and developed. Four prototype vehicles of different characteristics based on the same modular platform are going to be build up over a period of four years. The four fully automated and driverless vehicles demonstrate disruptive architectures in hardware and software, as well as disruptive concepts in safety, security, verification and validation. This paper outlines the most important research questions underlying the project
    corecore